

COCOA Simulation and Study of the EMU Alignment System

Robert Lee

CMS Endcap Muon Meeting
4 October 2001

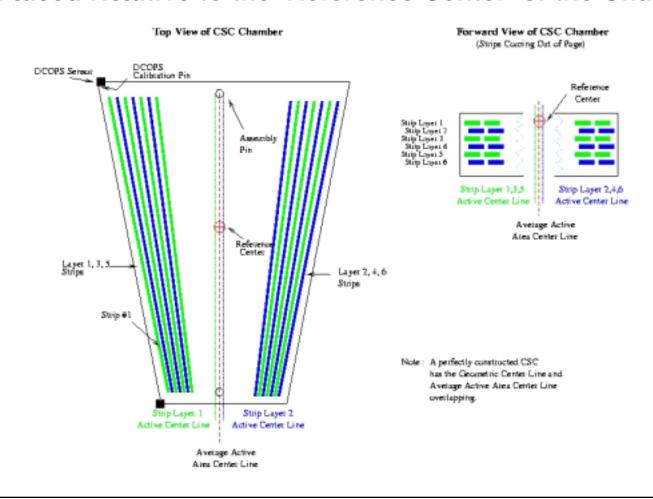
Simulation Status

Description of EMU Alignment System Geometry and Components Complete

Includes

- CSC Chamber Definition
 - < 10 µm Agreement on ME ±1 w/ Production Drawings
 - < 5 µm Agreement on ME ±2, ±3, ±4 w/ Prod. Drawings
- Transfer Plates
- Secondary Sensors: Inclinometers, Proximity Sensors

Realistic Estimation of Uncertainties on CSC Construction and Strip Placement


First Estimation of System Uncertainties

CSC Definition in COCOA

CSC Definition:

2 DCOPS Placed Relative to the 'Reference Center' of the Chamber

Uncertainty in DCOPS - Reference Center Relationship*

CSC X-Axis (Perpendicular to Centerline, ~CMS RФ):

Uncertainty Origin	Magnitude (μm)
Central Alignment Pin - Notched Alignment Marks	25
Notched Alignment Mark - Numbered Reference Strip	25
Intrinsic Strip Positioning (from milling)	30
Averaged Centerline Across 6 Assembled Planes	87
Positioning of Primary DCOPS Alignment Pins/Holes	25
Diameter of Primary DCOPS Alignment Pins/Holes	25
Placement of Mounting Plate On Chamber	50
Placement of DCOPS Mounting Plate	50
DCOPS Calibration, Construction**	65
Maximal Shearing Effect (Averaged across 6 layers, No Reliable Data?)	25

Final Estimation of Uncertainty Along X Axis of Chamber: 144 µm

^{*} Estimates based on data supplied by O. Prokofiev, N. Chester, Muon TDR, CMS Internal Notes

^{**} Estimate based on 40 µm 1st Pixel Calibration + COPS Sensor Board Calibration, J. Moromisato et al, Oct 2000

Uncertainty in DCOPS - Reference Center Relationship*

CSC Y-Axis (CMS Z):

Uncertainty Origin	Magnitude (μm)
Panel Thickness (Maximal deviation)	508
Frame to Panel Placement	127
Mounting Bracket Chamber-Shim Standoff	100
Mounting Bracket Al. Plate	125
DCOPS Calibration, Construction**	65

Final Estimation of Uncertainty Along Y Axis of Chamber: 551 µm

ncertainties which are asymmetric are estimated as symmetric at max deviation

Examples: Panel Thickness Uncertainty is +508 μm - 245 μm Mounting Bracket Chamber-Shim Standoff +100 μm - 0 μm Average Sheering Effect between layers is asymmetric

^{*} Estimates based on data supplied by O. Prokofiev, N. Chester, Muon TDR, CMS Internal Notes

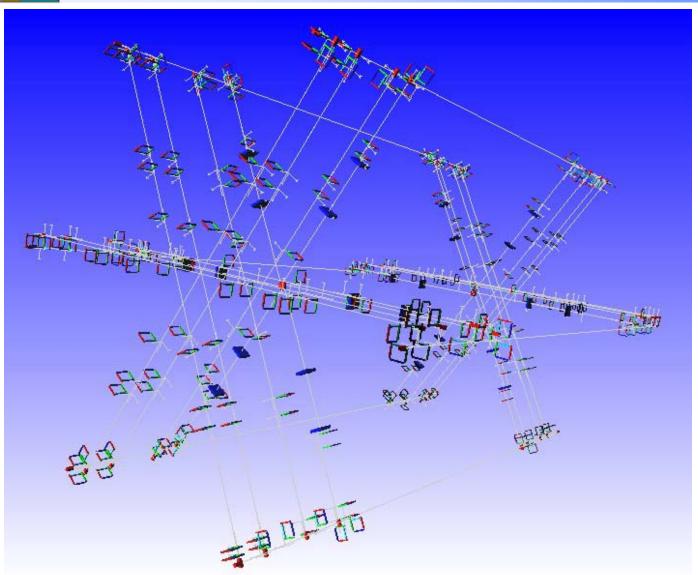
^{**} Estimate based on 40 µm 1st Pixel Calibration + COPS Sensor Board Calibration, J. Moromisato et al, Oct 2000

Other Uncertainties in the COCOA EMU Simulation

Hardware (Transfer Plates, Z Standoffs, etc)

Estimates from production drawings

MAB Uncertainty


- ±135μm ±30 µrad on MAB Placement
- ±35µm MAB Deformation
- ±50μm ±10 μrad on DCOPS Placement on MAB

Measurement Uncertainties

- Performance of all devices set to long term, uncorrected resolutions found in 2000 ISR tests
- Secondary LINK Laser Line Uncertainty set to ±20µm and ±10 µrad
- Link 2D Sensor Modeled as making 5um measurements

COCOA Model of EMU Simulation

Full EMU COCOA Simulation

Full EMU Simulation Model has:

- > 19000 Lines Text in Input File
- > 6200 Entries to Fit
- > 6000x1500 Matrix Constructed for Fit

THIS IS A PROBLEM !!!

- Computer(s) Crash with error indicating problem is with memory (allocation & usage)
- 1 iteration of ME ±2, ±3, ±4, and Transfer System with completed on System with > 1 GB RAM (with 92% memory used before I killed it)
- Temporary Solution is to Compare Subsets of Full System, look for correlations

Comparison of Subset Simulations

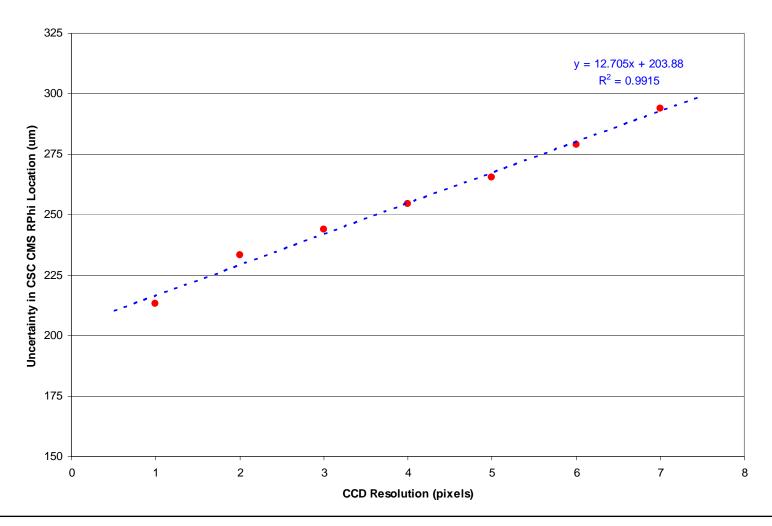
- All Sub-Systems Had Full Transfer Line
- Largest Sub-System has 6 ME Disks
 - ME ±2, ±3, ±4 w/ Transfer System
- All Permutations of 2 ME Disks + Transfer System were examined (56 Separate Simulations)

Conclusion:

Estimates of equal size systems are comparable Estimates from smaller systems are comparable to estimates from larger systems

1st Simulation Study Results

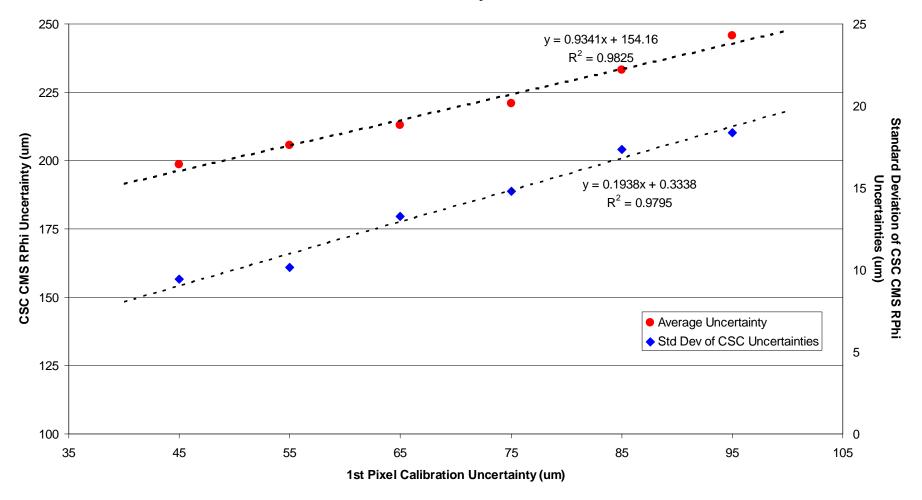
Uncertainty in Reconstruction of CSC Reference Center*


	σ CMS RΦ (μm)	σ CMS Z (μm)
ME ±1/2 (σ inclinometer = short term ISR)	160 – 175 (90 95)	370 – 420 (379 385)
ME ±1/3	210 – 225	670 – 880
ME ±2/1, ±3/1, ±4/1	190 – 210	400 – 420
ME ±2/2, ±3/2, ±4/2	220 – 250	400 – 450

^{*} Translation to any strip position in chamber at wide end is <40 μ m in quadrature with above σ

Current Simulation Work Understanding Details: Pixel Resolution

CMS RPhi CSC Resolution vs DCOPS CCD Pixel Resolution ME ±2 w/ Transfer System Simulation



Current Simulation Work

Understanding Details: Calibration Precision

CMS RPhi CSC Resolution vs DCOPS Calibration Precision ME ±2 w/ Transfer System Simulation

